A systematic literature review of machine learning methods applied to predictive maintenance

Abstract

The amount of data extracted from production processes has increased exponentially due to the proliferation of sensing technologies. When processed and analyzed, data can bring out valuable information and knowledge from manufacturing process, production system and equipment. In industries, equipment maintenance is an important key, and affects the operation time of equipment and its efficiency. Thus, equipment faults need to be identified and solved, avoiding shutdown in the production processes. Machine Learning (ML) methods have been emerged as a promising tool in Predictive Maintenance (PdM) applications to prevent failures in equipment that make up the production lines in the factory floor. However, the performance of PdM applications depends on the appropriate choice of the ML method. The aim of this paper is to present a systematic literature review of ML methods applied to PdM, showing which are being explored in this field and the performance of the current state-of-the-art ML techniques. This review focuses on two scientific databases and provides a useful foundation on the ML techniques, their main results, challenges and opportunities, as well as it supports new research works in the PdM field.

Publication
Computers & Industrial Engineering, Volume 137, November 2019, 106024
Thyago Carvalho
Thyago Carvalho
PhD Student
and former Master’s Student

Fabrizzio Soares is bla bla bla.

Fabrizzio Soares
Fabrizzio Soares
Associate Professor and CS Chair

Fabrizzio Soares is a professor of Computer Science, Information Systems and Software Engineering at INF/UFG. His research interests include Computer Vision, Human Computer Interaction, Machine Learning and Programming topics. He is the leader of the Pixellab group, which develops solutions for accesibilty, Precision Agriculture, and Interactive Systems.

Related